Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microorganisms ; 11(2)2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2216629

ABSTRACT

The scale at which the SARS-CoV-2/COVID-19 pandemic has spread remains enormous. Provided the genetic makeup of the virus and humans is readily available, the quest for knowing the mechanism and epidemiology continues to prevail across the entire scientific community. Several aspects, including immunology, molecular biology, and host-pathogen interaction, are continuously being dug into for preparing the human race for future pandemics. The exact reasons for vast differences in symptoms, pathophysiological implications of COVID-infections, and mortality differences remain elusive. Hence, researchers are also looking beyond traditional genomics, proteomics, and transcriptomics approach, especially entrusting the environmental regulation of the genetic landscape of COVID-human interactions. In line with these questions lies a critical process called epigenetics. The epigenetic perturbations in both host and parasites are a matter of great interest to unravel the disparities in COVID-19 mortalities and pathology. This review provides a deeper insight into current research on the epigenetic landscape of SARS-CoV-2 infection in humans and potential targets for augmenting the ongoing investigation. It also explores the potential targets, pathways, and networks associated with the epigenetic regulation of processes involved in SARS-CoV-2 pathology.

2.
Genes (Basel) ; 13(12)2022 12 13.
Article in English | MEDLINE | ID: covidwho-2163301

ABSTRACT

The novel coronavirus-19 (SARS-CoV-2), has infected numerous individuals worldwide, resulting in millions of fatalities. The pandemic spread with high mortality rates in multiple waves, leaving others with moderate to severe symptoms. Co-morbidity variables, including hypertension, diabetes, and immunosuppression, have exacerbated the severity of COVID-19. In addition, numerous efforts have been made to comprehend the pathogenic and host variables that contribute to COVID-19 susceptibility and pathogenesis. One of these endeavours is understanding the host genetic factors predisposing an individual to COVID-19. Genome-Wide Association Studies (GWAS) have demonstrated the host predisposition factors in different populations. These factors are involved in the appropriate immune response, their imbalance influences susceptibility or resistance to viral infection. This review investigated the host genetic components implicated at the various stages of viral pathogenesis, including viral entry, pathophysiological alterations, and immunological responses. In addition, the recent and most updated genetic variations associated with multiple host factors affecting COVID-19 pathogenesis are described in the study.


Subject(s)
COVID-19 , Virus Diseases , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Genome-Wide Association Study
3.
Molecules ; 27(20)2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2071654

ABSTRACT

Mycobacterium tuberculosis (Mtb), an acid-fast bacillus that causes Tuberculosis (TB), is a pathogen that caused 1.5 million deaths in 2020. As per WHO estimates, another 4.1 million people are suffering from latent TB, either asymptomatic or not diagnosed, and the frequency of drug resistance is increasing due to intrinsically linked factors from both host and bacterium. For instance, poor access to TB diagnosis and reduced treatment in the era of the COVID-19 pandemic has resulted in more TB deaths and an 18% reduction in newly diagnosed cases of TB. Additionally, the detection of Mtb isolates exhibiting resistance to multiple drugs (MDR, XDR, and TDR) has complicated the scenario in the pathogen's favour. Moreover, the conventional methods to detect drug resistance may miss mutations, making it challenging to decide on the treatment regimen. However, owing to collaborative initiatives, the last two decades have witnessed several advancements in both the detection methods and drug discovery against drug-resistant isolates. The majority of them belong to nucleic acid detection techniques. In this review, we highlight and summarize the molecular mechanism underlying drug resistance in Mtb, the recent advancements in resistance detection methods, and the newer drugs used against drug-resistant TB.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Nucleic Acids , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Pandemics , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Tuberculosis/microbiology , Drug Resistance , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL